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5.4.3 Netting Analysis of Cylindrical Pressure Vessels  S. T. Peters 2001

This software is provided free for your use with no guarantee as to its effectiveness.  It is
copyrighted by Process-Research and may not be duplicated, given away or traded with
anyone.  If you have problems with it we would appreciate some notification.  NO
WARRANTIES.  Process-Research disclaims all warranties either express or implied,
including but not limited to implied warranties as to merchantability or fitness for a particular
purpose with respect to the SOFTWARE or the accompanying written materials. This includes
NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall Process-Research be
liable for any damages whatsoever (including, without limitation damages for loss of
business profits business interruption loss of business information or other pecuniary loss)
arising out of the use of or inability to use this product, even if Process-Research has been
advised of the possibility of such damages.

The following equations and the attached programs are described in Filament
Winding, Composite Structure Fabrication  pp5-43-50, 2nd Ed., 1990,   SAMPE
Publishers

Netting analysis is a simple procedure for predicting stresses in a fiber-reinforced composite
by neglecting the contribution of the resin system. The procedure has intuitive appeal, and it
gained acceptance early in the development of composite structures. The technique applies
static equilibrium principles with no consideration given to strain compatibility. Even with
such theoretical flaws, netting analysis continues to survive, and is sometimes useful for
sizing and for predicting failure in simple structures. However the technique should not be
extended to other than simple pressure vessels and the design of any composite structure
must be based on a thorough understanding of laminate plate theory

As an example application, consider a filament wound cylinder of radius R pressurized with
an internal pressure pi

If the vessel is wound with only helical (±θ) fibers, with an allowable fiber stress σfθ

determine the helical fiber thickness (t fθ) and the wind angle θ.

Figure 5.11 shows forces acting on a two-ply helical layer with a cut of unit width (a) in the
axial plane, and (b) in the circumferential plane. Summing forces in the axial (m) direction in
Figure 5-11a shows:
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Solving Equation [5.61], the helical fiber thickness required to contain the internal pressure
is:

t
P R

f
i

f
θ

θσ θ
=

2 2cos
[5.62]

Summing forces in the circumferential (h) direction in Figure 5.12b, produces:

N t P Rh f f i= =σ θθ θ sin2 [5.63]
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Using t fθ  from Equation [5.62] in [5.63] shows that tan2

θ =2, or θ=± 54.7 degrees. This is the wind angle
required for a pressurized cylinder with helical windings
only.

If the vessel is wound with both helical (±θ) fibers and
hoop (θ≈90o) fibers, determine the helical and hoop
fiber thickness t fθ    and t f90   respectively.

Figure 5-12 shows forces acting on a two-ply helical
layer and a hoop ply with a cut of unit width, (a) in the
axial plane, and (b) in the circumferential plane.
Summing forces in the axial direction (Figure 5-12a)
produces the helical fiber thickness required to contain
the internal pressure, given by Equation [5.62]. Using
this value for t fθ  when summing forces in the hoop
direction (Figure 5-12a) produces:
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Where σ f90  is the fiber stress in the hoop fibers

Conversely, when the CSA value is not known (many
fiber manufacturers may not include CSA in their product
descriptions), it can be determined from the following [5.65a] from the density and yield of the
fiber.

1
density
yield

CSA= [5.64a]

In the winding process, N spools are used to form a winding band of width W. Each spool has
a cross sectional area (CSA), values of which are listed in Table 5.3 for several rovings.

The fiber thickness for each ply as wound is:
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[5.65]

The fiber stress at failure in a composite laminate is less than that for a unidirectional coupon
test or a strand tensile test. This reduction is called the translation efficiency; typical values
are 70 to 80% of the strand tensile value. For example, the allowable stress for Kevlar 49
fibers is 3800 MPa (550 ksi) in a strand tensile test (Table 2-2). A high value of fiber stresses
for Kevlar 49 in a pressure vessel application is 2750 MPa (400 ksi), a translation efficiency
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of 73%. Translation efficiency is affected by fiber damage during wind, voids, complex stress
states, etc., which are present in the laminate, and not in a strand tensile specimen.

In a biaxial tension field, like a pressure vessel, Kevlar 49 typically exhibits lower translation
efficiencies than glass or graphite. Kevlar, with its fibrous microstructure, is easily split
longitudinally by matrix cracks, if the matrix is tightly bonded to the fiber. If the fiber is coated
with a release agent before winding, matrix cracking can bypass the fibers, improving
efficiency. Usually, fibers where interlaminar shear strength is important would not be
released. Reflecting this, in a cylindrical pressure vessel the hoop fiber would be
released, while the helicals, with discontinuities at the dome cylinder junction and at the polar
boss, would not be released. Translation efficiencies of the hoop fibers would typically be
increased from 70 to 85% by releasing. Releasing glass and graphite fibers has been found
to be ineffective in improving translation efficiencies for these fibers.

In a cylindrical pressure vessel, translation efficiencies are usually lower for helical fibers
than for hoop fibers. This is because the helical patterns include more overlaps and
crossovers, as well as discontinuities at the dome cylinder junction and in the polar boss
region. For these reasons, the helical-to-hoop fiber stress ratio used in design is usually
between 75 and 100%.

In winding, the number of plies is selected so that the ply thickness in Equation [5.65] divides
equally into the total fiber thickness required, Equations [5.62] and [5.64]. Band widths are
selected in conjunction with the number of spools so that a band thickness (including resin)
of about 100 to 250 µ (0.004 to 0.010 inches) is produced. This provides a band that is
neither too thick nor too thin. For the helical windings, the band width Wθ is selected to cover

the cylinder with no overlap with a whole number of bands wound at the angle θ. The helical
ply thickness (including resin) is then:
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Where Vfθ  is the fiber volume fraction for the helical windings. For the hoop windings, the
band width W90 is selected so that the hoop windings do not deviate appreciably from the 90

o

wind angle. The hoop ply thickness (including resin) is then:
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Where V f90   is the fiber volume fraction for the hoop plies. Table 5-4 provides typical ranges
of fiber volume fractions attained with different fiber systems for helical and hoop plies. Actual

fiber volume fraction
depends on several
process and geometric
considerations including
resin viscosity, mandrel
diameter, winding tension,
wind angle, processing
time, B-stage temperature,
and external pressure
during cure. The fiber

volume fraction is determined by using in-processing thickness measurements. Good
process control produces repeatable dimensions.

Numerical Example

The above equations are used to provide preliminary thickness for the standard ASTM D-
2528 pressure vessel (Figure 5-13) designed for a 45.5 MPa (6600 psi) burst pressure and
an inside diameter of 146 mm (5.75 inch). If the winding machine is set up for a 5.8 mm (0.23
inch) hoop band width and 5.1 mm (0.2 inch) helical band width, the specified helical wind
angle θ in the cylinder is ≈12

o
.  The vessel is to be wound with Kevlar 49, 4-end aerograde

roving (Table 2-2). Design allowables are chosen as 2.93 GPa (425 ksi) hoop fiber stress,
and 2.21 GPa (320 ksi) helical fiber stress. This uses translation efficiencies of 77% for the
hoops, and 58% in the helicals, with a 75% ratio of helical to hoop fiber stress.

The required helical fiber thickness Equation [5.62] is:
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Assuming 3 helical layers (6 helical plies), the calculated number of helical spools Equation
[5.65] is:
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The design would use Nθ= 2, the closest whole number. It may be desirable to repeat the
calculations with a slightly modified band width so that the calculated number of spools is
closer to a whole number:

The required hoop fiber thickness Equation [5.64] is:
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Assuming 9 hoop plies, the number of hoop spools Equation [5.66] is:
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Assuming a fiber volume fraction of 0.6 for the helical, and 0.65 for the hoops (Table 5-5), the
total composite thickness is Equations [5.66 plus 5.67]:
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